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Transition Metal-Binding Proteins from
Three Chesapeake Bay Fish Species
by Rolf Andersen,* John Frazier,* and P. C. Huang*t

Three species of Chesapeake Bay fish were collected, and endogenous levels of metal binding protein (MBP)
were determined. In addition, the induction of metal-binding proteins by cadmium was studied. Livers from
freshly caught fish were extracted and chromatographed on Sephadex G-75 to resolve MBP in the 5 to 20
kdalton range. All species studied exhibit measurable but varied levels of endogenous MBPs in the molecular
weight range investigated, mostly as a copper protein complex. Upon induction with cadmium, the total
MBP content increased in both catfish (Ictalurus punctatus) and striped bass (Morone saxatilis), with
significant amounts of cadmium bound to the protein. In white perch (Morone americana), induction of
MBPs with cadmium could not be demonstrated due to the large amount of constitutive Cu-BP present,
although significant quantities of cadmium were bound to MBP. Electrophoresis in polyacrylamide gel was
used to further identify these MBPs. Electrochemical analysis of the MBPs by polarography indicated that
the wave properties of the fish MBPs resemble that of rat metallothionein. In conclusion, these studies
indicate that: MBPs are present in estuarine fish from the Chesapeake Bay; concentrations of MBPs and
their inducibility by exogenous cadmium vary with species, and fish MBPs may be related to mammalian
metallothionein.

Introduction
Striped bass (Morone saxatilis) and white perch (Mo-

rone americana) are two species of fish coinhabiting in
the Chesapeake Bay area. Considered the noblest of Bay
creatures, striped bass have been a sporting as well as
gourmet favorite ofmany. However, striped bass spawning
population has undergone an alarming reduction in size
in the last few years. The annual index of its reproductive
success has reached an all time low approaching oblivion.
A legislative moratorium on fishing for this species along
its migratory route of the Atlantic coast and in the Ches-
apeake Bay has now been imposed. White perch, on the
other hand, appears to thrive well. It is thus important
to learn what are the causes for the decline in striped
bass population. What selective differences are there be-
tween the two Morone species which account for the de-
cline in M. saxatilis and the apparent stability of M.
americana?

Several factors have been attributed to the peril of
striped bass; among them acid rain, overfishing, and land-
leached contaminants, such as heavy metals. This study
is to examine whether striped bass and other fish species
in the same natural environment possess different de-
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fense mechanisms against toxicity of metals, particularly
transition IB and IIB metals, copper, zinc, and cadmium.
In mammals, the inducible metal-binding protein metal-
lothionein has been suggested to have a detoxification
function (1). Results to be presented in this report will
show that similar, but not identical, metal-binding pro-
tein(s) exist in these and other fish species examined.
Their constitutive levels and inducibility, however, differ,
with striped bass showing only about 10% as much of
this protein as white perch.

Materials and Methods
Fish

Fish species used in this study were caught and iden-
tified on board the Ridgely Warfield, a research vessel of
the Chesapeake Bay Institute, Johns Hopkins University,
in April 1984, under the cruise-directorship of Dr. Robert
Chapman.

Isolation of Cystolic Metal-Binding
Proteins by Gel-Permeation
Chromatography on Sephadex G-75
Fresh fish livers were homogenized in 0.1 M ammonium

formate, pH 7.4 (1:4, wlv), heat-treated at 80°C for 2 min
and centrifuged at 40,000g for 30 min. Radioactive 109Cd
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(40,000 cpm/mL) was added to the supernatant prior to
chromatography. An aliquot of supernatant (6-10 mL)
was applied to a Sephadex G-75 column (2.5 x 72.5 cm)
and eluted with 0.05 M Tris HCI (pH 7.4) and 5 mM 1B-
mercaptoethanol at a flow rate of 60 mL/hr. Fractions (4
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mL) were collected and analyzed for UV absorption at
254 nm, stable Cd, Zn, and Cu, and radioactive 109Cd.
Recovered 109Cd was detected by a Beckman Gamma
4000 counter. Stable Cd as well as Zn and Cu were meas-
ured by atomic absorption spectrophotometry. The pre-
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FIGURE 1. Isolation of cytosolic metal-binding proteins by gel-permeation chromatography on Sephadex G-75: (A) Cd; (U) Cu; (A) Zn. Liver
homogenates were chromatographed on a Sephadex G-75 column (2.5 x 72.5 cm) and eluted with 0.05 M Tris HCl, pH 7.4, a flow rate of
60 mL/hr. (See text for determination.)In Cd induction studies, CdC12 was injected intramuscularly in doses of 0.5, 1.0, and 2.0 mg/kg over
a 3-day period. Fish were sacrificed 24 hr after the last injection: Proteins from (A) striped bass, constitutive; (B) striped bass, induced.
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sented data have been normalized to equal volumes of
cytosol applied to the column.

In Cd-induction studies, cold CdC12 was injected in-
tramuscularly in doses of 0.5, 1.0, and 2.0 mg/kg over a
3-day period. Fish were sacrificed 24 hr after the last
injection.

I-

wL

Resolution of Cd-Binding Protein by
DEAE-Sephadex A-50 Anion Exchange
Chromatography
The major Cd binding peak from Sephadex G-75 chro-

matography of induced striped bass cytosol was rechro-
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FIGURE 2. Isolation of cytosolic metal-binding proteins by gel-permeation chromatography on Sephadex G-75: (A) Cd; (U) Cu; (A)Zn. Protein

from (A) white perch, constitutive; (B) white perch, induced. Details as in Fig. 1.
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matographed on a DEAE-A-50 Sephadex column (1.5 x
25 cm). The column was equilibrated and washed follow-
ing sample application with 0.05 M Tris HCI buffer, pH
8.5, at room temperature. The column was eluted with
a linear gradient from 0.05 to 0.5 M Tris-HCI. Fractions
of 4 mL were collected and analyzed for Cd, Zn, and Cu
by atomic absorption spectrometry.
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Determination of Metal Content

Metal concentration (Cd, Zu, and Cu) in chromato-
graphic fractions were determined by atomic absorption
spectrophotometry on a Varian (Model AA5) spectro-
photometer. Samples were aspirated directly without di-
lution.
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FIGURE 3. Isolation of cytosolic metal-binding proteins by gel-permeation chromatography on Sephadex G-75: (A) Cd; (U) Cu; (A)Zn. Protein
from (A) catfish, constitutive; (B) catfish, induced. Details as in Fig. 1.

0.4

0.3

200 300 380

ELUTION VOLUME (ml)

152



METAL-BINDING PROTEINS IN FISH

N1.

-

0zI

z0.1(.

o .7
o 20 40 60 80 100 120

FRACTION NUMMBER

FIGURE 4. Resolution of striped bass Cd-binding protein by DEAE-
anion-exchange chromatography. The major Cd-binding fractions of
induced striped bass cytosol from Sephadex G-75 chromatography
were pooled and rechromatographed on a DEAE A-50 column (1.5
x 25 cm), with a linear gradient from 0.05 to 0.5 M Tris. Fractions
(4 mL) were collected and analyzed for stable Cd by atomic ab-
sorption spectrophotometry.

Differential Pulse Polarography of Heat-
Treated Fish Hepatic Cytosol

Differential pulse polarography by the Brdicka pro-
cedure was caried out according to Palecek and Pechan
(2) and Olafson and Sim (3) by use of a Metrohm E502
analyzer. Analysis was performed in 10 mL aliquots of
supporting electrolyte by scanning from - 1.30 to - 1.60

V at -5 mV/sec. The mercury drop time was 0.5 sec
and the sensitivity setting 20 ,uA/mm. The Brdicka co-
balt electrolyte was used without surface-active agent.
The electrolyte was purged with high purity nitrogen for
8 min prior to addition of sample and then for an additional
2 min.

Polyacrylamide Gels of Fish Hepatic
Cytosols

Fish heat-treated cytosol samples (5-10 j,L) were run
on a polyacrylamide gel electrophoresis system consisting
of 5% stacking gel and a 7.5% to 17% gradient gel using
a Sturdier vertical slab gel unit (model SE400, Hoefer
Scientific Instruments) and a Buchler 3-1500 constant
power supply. The chemical polymerization of the poly-
acrylamide gel was performed by using ammonium per-
sulfate and TEMED as catalyst-redox system. A small
amount of glycerol was added to minimize turbulence
during gradient pouring. Both stacking and gradient gel
contained 0.1% SDS. Before electrophoresis all samples
were diluted 1:1 with a denaturing solution containing
4% SDS and 10% 3-mercaptoethanol and heated at 80°C
for 2 min to minimize negative charge differences and
disrupt disulfide linkages. The running buffer for the
electrophoresis also contained 0.1%o SDS.

Purified rat liver metallothionein standard used as a
marker protein was prepared according to Ohi et al. (4).

Results
Inspection of the Sephadex G-75 profiles for all three

species of fish (Figs. 1-3) indicates that low molecular
weight metal-binding proteins (MBP) are present in fish
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FIGURE 5. Differential pulse polarography was performed using a Metrohm E 502 analyzer on 10 mL aliquots of supporting electrolyte by
scanning from - 1.30 to - 1.60 V at - 5 mV/sec. (See text for details.) From left to right: with multiple scanning with increasing sample
volumes as shown in parentheses: (1) (A) purified rat liver metallothionein, standard 100 ,ug/mL (50, 100, 200, 400 ,uL in ascending order)
and (B heat-treated rat liver cytosol, Cd-induced (100, 200 ,uL); (2) striped bass liver cytosol (5, 10, 20, 30, 70 ILL); (3) striped bass liver
cytosol, Cd-induced (5, 10, 20, 30 ,uL); (4) catfish liver cytosol, (5, 10, 20, 60, ILL); (5) catfish liver cytosol, Cd-induced (5, 10, 20, 30, 70
,uL); (6) white perch liver cytosol (10, 15, 20 FL). Abscissa: in volts from - 1.30 to - 1.60; ordinate: nA in arbitrary units.
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obtained from the natural environment. In all three fish
species, the naturally occurring MBPs are predomi-
nantly copper complexes, with lesser amounts of zinc and
only traces of cadmium present. The "09Cd-binding data
demonstrate that naturally occurring MBPs will bind
cadmium with a high affinity, relative to other intracell-
ular ligands, in spite of their significant copper loads.
The relative elution volumes (Ka) for these MBPs indicate
that striped bass (Ka = 0.71) and catfish (Ka = 0.69)
have similar apparent molecular weights, while the white
perch BP behaves on the Sephadex G-75 column under
these experimental conditions as a larger protein (Ka =
0.58).

Injections of cadmium intramuscularly results in sig-
nificant quantities of cadmium binding to the MBPs. In
the case of the catfish and striped bass, the total MBP
content increased following cadmium induction. With the
white perch it is not possible to draw a similar conclusion
due to the extremely high levels of copper-BP present in
the uninduced fish.

Only in the case of the striped bass was DEAE-anion-
exchange chromatography successful (Fig. 4). Insuffi-
cient quantities of catfish MBP were available, while
white perch gave low quality profiles (smeared peaks)
possibly due to the presence of large quantities of copper.
For the striped bass, the DEAE results indicated two
major cadmium-containing peaks. The possibility of ad-
ditional minor cadmium-containing peaks cannot be ruled
out.

Analysis of the crude MBP preparations obtained from
Sephadex G-75 chromatography by differential pulse po-
larography indicated that the MBPs from all three fish
species exhibited characteristics similar to mammalian
metallothioneins (Fig. 5). This conclusion is based on the
close correspondence of the electrode voltage at the re-
ductive wave peak between rat MT and the fish MBPs
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FIGURE 6. Comparison of polarographic responses for normal and
induced fish. The data in Fig. 5 were replotted to show polaro-
graphic response versus amount of added cytosolic protein: (A)
naive white perch; (U) striped bass induced; (A) striped bass con-
trol; (0) catfish induced; (A) catfish control.

(at - 1.45 V). When the polarographic response is plotted
versus increasing additions of cellular proteins to the re-
action vessel (Fig. 6) there is evidence for induction of
BPs with cadmium injections for catfish and striped bass.
Furthermore, it is apparent that either the white perch:00~~~~~~~~~~~~~~~~~~~if :::.. |~ ~~~~~~~~~~~~~~~~ .. ............_~;:-!~!!f:ifjf
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FIGURE 7 Polyacrylamide gel electrophoresis of heat-treated fish
hepatic cytosols. Polyacrylamide gradient gel (7.5-17%) was used
to analyze heat-treated fish hepatic cytosols. Gels were stained
with Coomassie Brilliant Blue stain in lanes from left to right: (1)
Cd-induced rat liver, heat-treated cytosol; (2) catfish liver, control
cytosol, (3) catfish liver, Cd-induced cytosol; (4) striped bass liver,
control cytosol, (5) striped bass liver, Cd-induced cytosol; (6) white
perch liver, control cytosol; (7) striped bass, ion-exchange, peak
A; (8) striped bass, ion-exchange, peak B; (9) purified rat liver,
MT standard; (10) protein markers (phosphorylase B, 94,000; bo-
vine serum albumin, 67,000; ovalbumin, 43,000; carbonic anhy-
drase, 30,000; soybean trypsin inhibitor, 20,100; a-lactalbumin,
14,400).
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Table 1. Metallothionein in fish and other marine vertebrates.

Species Tissue Associated metals Apparent MW Reference
Carassius auratus L. (gold fish) Liver (5)
Sebastodes caurinus (copper rock fish) Liver 11,000 (6)
Halichoerus grypus (Atlantic grey seal) 9,000 (6)

Anguilla anguilla (eel) Liver, gill Cd, Zn, Cu (7)
Pleuronectes plastessa (plaice) Liver 14,000; 13,000; 15,000 (8,9)
Leptocottus armatus (Pacific staghorn sculpin) (10)
Cyrinus carpio (carp) Liver Cd, Cu, Zn 12,400 (11)
Oncorhynchus kisutch (coho salmon) Liver, gill, Cu (12,13)

kidney
Salmo gairdneri (rainbow trout) 15,000 (14-19)
Perca fluviatilis (perch)
Morone saxitalis Liver Cd, Cu, Zn This study
Morone americana Liver Cd, Cu, Zn This study
Salmo trutta tarioli (brown trout) (14)
Rutilus rutilus (roach)
Fundulus heteroclitus (killifish) (20)

BP has a significantly greater response (Ramps per
pmole protein) or there are much greater quantities of
the MBP naturally present in white perch. The latter
conclusion is supported by the metal content of the MBP
peak in Sephadex G-75 profiles (Figs. 1A, 2A, 3A).
The polyacrylamide gradient gel electrophoresis re-

sults are given in Figure 7. Coomassie Brilliant Blue
staining indicates that all three fish species, normal as
well as cadmium induced, exhibit a band which migrates
with the same characteristics as authentic rat MT-I. Sig-
nificant quantities of this protein are present in normal
catfish. Of particular interest is the strongly staining low
molecular weight band in the induced striped bass lane.
This protein may represent cadmium-induced induction
of a new cellular protein. Further studies will be nec-
essary to investigate this possibility.

Discussion
Several species of fish have been previously examined

for the presence of metallothionein-related metal-binding
proteins in the liver. These results are summarized in
Table 1. As shown in the table, proteins with apparent
molecular weight from 9 to 15.3 kdalton exists in these
fish. Except in plaice, where one of the proteins has been
shown to share a conserved mammalian type of metal-
lothionein sequence, the primary structure and function
of most metal-binding proteins are yet unclear.
A major finding in this study is the drastic difference

between the amount of copper and metal-binding protein
in two related species of the same genus of fish. White
perch accumulates between 100 and 1000 times more cop-
per in the liver than striped bass. It is thus significant
to observe that the corresponding binding protein is at
least 10-fold higher in the former.

Several mechanisms can explain this species variation,
two of which are particularly attractive: (a) differential
affinity for metals due to alteration in the intracellular
binding proteins and (b) similar proteins but differential
expression due to amplified gene copies. These are test-

able explanations and are indeed being examined exper-
imentally.

This study was supported in part by a Norwegian National Research
Fellowship (R.A.), Sea Grant, University of Maryland and NSF Grant
PCM8104369.

REFERENCES

1. Webb, M., and Cain, K. Commentary: functions of metallothionein.
Biochem. Pharmacol. 31: 137-142 (1982).

2. Palecek, E., and Pechan, Z. Estimation of nanogram quantities of
proteins by pulse-polarographic technique. Anal. Biochem. 42: 59-
71 (1971).

3. Olafson, R. W, and Sims, R. G. An electrochemical approach to
quantitation and characterization of metallothioneins. Anal.
Biochem. 100: 343-351 (1979).

4. Ohi, S., Cardenosa, G., Pine, R., and Huang, P C. Cadmium-
induced accumulation of metallothionein messenger RNA in rat
liver. J. Biol. Chem. 256: 2180-2184 (1981).

5. Marafante, E. Binding of mercury and zinc to cadmium-binding
protein in liver and kidney of goldfish (Carassius auratus L.) Ex-
perientia 32: 149-150 (1975).

6. Olafson, R. W, and Thompson, J. A. J. Isolation of heavy metal
binding proteins from marine vertebrates. Mar. Biol. 28: 83-86
(1974).

7. Noel-Lambot, E, Gerday, Ch., and Disteche, A. Distribution of Cd,
Zn and Cu in liver and gills of the eel Anguilla anguilla with
special reference to metallothioneins. Comp. Biochem. Physiol. 61C:
177-187 (1978).

8. Overnell, J., and Coombs, T. L. Purification properties of plaice
metallothionein, a cadmium-binding protein from the liver of the
plaice (Pleuronectes platessa). Biochem. J. 183: 277-283 (1979).

9. Higham, D. P., Nicholson, J. K., Overnell, J., and Sadler, P. J.
NMR studies of crab and plaice metallothioneins. Environ. Health
Perspect. 65: 157-165 (1986).

10. Ridlington, J. W, Chapman, D. C., Goeger, D. E., and Whanger,
P D. Metallothionein and Cu-chelatin: characterization of metal-
binding proteins from tissues of four marine animals. Comp.
Biochem. Physiol. 70B: 93-104 (1981).

11. Kito, H., Ose, Y, Mizuhira, V, Sato, T., Ishikawa, T., and Tazawa,
T. Separation and purification of (Cd, Cu, Zn)-metallothionein in
carp hepato-pancreas. Comp. Biochem. Physiol. 73C: 121-127
(1982).

12. Buckley, J. T., Roch, M., McCarter, J. A., Rendell, C. A., and
Matheson, A. T. Chronic exposure of coho salmon to sublethal
concentrations of copper-I. Effect on growth, on accumulation and



156 ANDERSEN, FRAZIER, AND HUANG

distribution of copper, and on copper tolerance. Comp. Biochem.
Physiol. 72C: 15-19 (1982).

13. McCarter, J. A., and Roch, M. Hepatic metallothionein and re-
sistance to copper in juvenile coho salmon. Comp. Biochem. Physiol.
61C: 133-137 (1983).

14. Kay, J., Thomas, D. G., Brown, M. W., Cryer, A., Shurben, D.,
Solbe, J. del. G., and Garvey, J. A comparison of cadmium ac-
cumulation and protein binding patterns in tissues of the rainbow
trout, Salmo gairdner. Environ. Health Perspect. 65: 133-140
(1986).

15. Ley, H. L., Failla, M. L., and Cherry, D. S. Isolation and char-
acterization of hepatic metallothionein from rainbow trout (Salmo
gairdneri). Comp. Biochem. Physiol. 74B: 507-513 (1983).

16. Thomas, D. G., Solbe, J. F. del. G., Kay, J., and Cryer, A.
Environmental cadmium is not sequestered by metallothionein in
rainbow trout. Biochem. Biophys. Commun. 110: 584-592 (1983).

17. Gedamu, L. Zinc looks to be a better inducer of MT in fish than
Cd. Environ. Presented at the Conference on High Affinity Metal-

Binding Proteins in Non-Mammalian Species. National Institute
of Environmental Health Sciences, Research Triangle Park, NC,
September 19-21, 1984; manuscript unpublished.

18. Olsson, P. E., and Haux, C. The distribution of cadmium in livers
from a wild population of perch. Presented at the Conference on
High Affinity Metal-Binding Proteins in Non-Mammalian Species.
National Institute of Environmental Health Sciences, Research
Triangle Park, NC, September 19-21, 1984; manuscript unpub-
lished.

19. Olsson, P.-E., and Haux, C. Characterization ofcadmium induced
metallothionein from rainbow trout liver. Presented at the Con-
ference on High Affinity Metal-Binding Proteins in Non-Main-
malian Species. National Institute of Environmental Health Sci-
ences, Research Triangle Park, NC, September 19-21, 1984,
manuscript unpublished.

20. Weis, P., Bogden, J. D., and Enslee, E. C. Hg- and Cu-induced
hepato-cellular changes in the killifish, Fundulus heteroclitus.
Environ. Health Perspect. 65: 167-174 (1986).


